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SUMMARY

A three-dimensional (3-D) transient solid–�uid coupling system has been developed in order to study
cardiovascular systems and devices. The system utilized two commercial implicit solvers, which ex-
changed boundary parameters from separate meshes over a common interface. Facility was made for
the spatial interpolation of these exchange parameters so that the solid and �uid domain meshes need
not have similar density or topology. Stability algorithms were added to the iterative coupling process,
as were algorithms to smooth or entirely remesh the �uid domain interior subject to the deformations
imposed at the solid–�uid interface. Several application scenarios were undertaken, whereby simulation
results could be compared to either analytical or detailed experimental data. It was hoped they would
also o�er further insight into the operation of a number of clinical devices. The results of these com-
parisons show that the simulation of complex cardiac systems, with non-linear solid–�uid interactions,
can now be achieved with su�cient accuracy to be of signi�cant bene�t to manufacturers. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the years, implantable and extra-corporeal devices have signi�cantly improved the life-
expectancy and quality of life of patients su�ering from cardiovascular disease. However,
there are also signi�cant problems and complications associated with many of these devices.
These could be partially addressed by better design work arising from a better understanding
of the function of these devices, and their interaction with their physiological surroundings [1].
Simulation of these systems can provide valuable information that can be fed back into the
design process. Thus, di�erent materials and geometries can be evaluated relatively quickly
and cheaply, hopefully leading to better clinical results.
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It has long been recognized that the interactions between a �uid phase and a deformable
solid phase are of primary importance in a variety of systems, not least in physiological
simulation. This is doubly true for cardiovascular simulation where the solid and �uid materials
may have complex, non-linear properties; where complex geometries are common, and where
even small structural deviations may cause large changes in �uid behaviour (and vice versa).
However, high-performance computing power and numerical methods have progressed over
the last decade to the point where such three-dimensional (3-D) transient coupled simulations
can be achieved within realistic time-scales.
This paper describes the development of a transient coupled 3-D �nite-element system

aimed at the simulation of such cardiovascular problems, backed by a consortium of cardiac
device manufacturers.

2. IMPLEMENTATION

Several commercial and research codes exist for the coupling of solid and �uid mechanics.
However, the vast majority of these codes have become available only over the last few years,
and so algorithmic details, case studies and examples, particularly in physiological areas, are
often hard to �nd. Perhaps, the most well-known cardiovascular research is that of Peskin
and McQueen at NYU [2]. They have managed to produce both 2-D and 3-D models of
the heart, complete with functioning valves, within which the blood is pumped purely by the
constrictive action of the ventricle walls. They use a �nite volume code which simultaneously
solves for the solid–�uid interaction based on the so-called ‘immersed boundary’ method.
Here, the solid domain is not explicitly represented within the �uid domain, but rather exists
only by the additional force ‘�eld’ that the solid exerts on the �uid where the two domains
would overlap. Such a method can be straightforward to apply, but the researchers’ models
are very detailed and computationally costly. The method may also be only applicable to
‘thin’ structures.
An alternative coupling scheme to the simultaneous solution is that whereby two separate

solvers are used to solve the two distinct solid and �uid phases. The separate phases are
solved sequentially at a given time, with the boundary solution from one used as a boundary
constraint for the other. Such a coupling has been exploited by Perktold and colleagues at the
University of Graz [3–5]. They have coupled the commercial solid code Abaqus to their own
�uid code (an arbitrary Lagrangian=Eularian FE code using the Galerkin method) exploiting
the iterative coupling scheme. They have used it to study artery dynamics and anastemoses
in 3-D. A similar hybrid iterative scheme, coupling the �uid code CFX and the solids code
Abaqus, has been developed by Prof. Collins and his team at City University and Imperial
College in London [6–8]. They have produced some impressive 3-D simulations of blood
�ow through the carotid bifurcation, using initially a coupling over a single cardiac cycle, as
oppose to a single timestep of that cycle.
More recent developments have shown coupled simulations performed within a single soft-

ware package. Kunzelman et al. [9] have modi�ed the explicit LS-Dyna package, which now
boasts an incompressible �ow solver in addition to their well established structures solver,
and produced some impressive 3-D simulations of cardiac valves.
It was decided that for the purposes of this research two existing commercial codes, Ansys

and CFX, would be coupled, thereby exploiting the particular strengths of each in simulating
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Figure 1. Solution variable exchange between the two solvers.

their particular phase physics. Both codes also o�er parallel processing solvers, thus enabling
signi�cant reductions in simulation time on multi-processor architectures.

2.1. CFX-5

CFX-5 is a commercial CFD package that uses an implicit �nite-element control volume
formulation to construct the discrete equations representing the Navier–Stokes equations for
the �uid �ow. The mixed-element mesh can be unstructured and composed of hexahedra,
tetrahedra, wedges and pyramids. A coupled algebraic multi-grid solver is used to give robust
solutions for the governing discrete equations.

2.2. ANSYS

ANSYS [10] is a world-leading implicit �nite-element software product, for linear and non-
linear stress analysis. It has the facility for a wide range of structural elements and formula-
tions, and again meshes can be mixed and unstructured. It is used for calculating the response
of any deformable regions within the coupled simulation, based on appropriate loading from
the �uid.

2.3. Overview of basic coupling approach

The basic coupling approach was to use each solver to sequentially solve the separate phases,
on separate domain meshes that overlap only over a ‘wet’ boundary interface. Ideally, the
full-�uid stress tensor is passed from the �uid solution as a boundary load to the solid
domain, with the resultant deformation of that boundary returned as a �uid constraint. This
procedure is repeated at a given timestep until both solutions consistently produce the same
result. Simulation then proceeds to the next timestep. However, it is quite usual for such a
system to be unstable due to its inherent non-linearity; small structural deformations can cause
quite large changes in the �ow and pressure distributions within the �uid, which in turn can
have a signi�cantly di�erent e�ect on the solid deformations. Hence a simple under-relaxation
scheme was employed to stabilize the exchange parameters, in both directions:

�n= r�calc + (1− r)�n−1 (1)

Also, to simplify the exchange it was decided that only the dominant static pressure term
would be passed from the �uid phase to the solid. Figure 1 is a simpli�ed diagram of the
approach taken. x–x represents the �uid–structure interface. PF is the nodal �uid pressure �eld,
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Figure 2. Unmatched solid and �uid meshes.

Figure 3. The parametric quadrilateral face interpolation.

Figure 4. The parametric triangular face interpolation.

PS the nodal solid pressure �eld, SS represents the nodal solid displacement vector �eld and
SF the nodal �uid displacement �eld. A coupling cycle comprises a single coupled run of the
�uid and solid solvers.

2.4. Surface interpolation

The �uid–structure interface is a surface where the �uid and structural meshes conjoin and
is de�ned by a set of element faces and nodes on each mesh. (Figure 2). In many cases,
the density or element type of the meshes will di�er and the nodes of the two meshes will
not coincide spatially. In order to pass solution-variable data across such an interface, surface
interpolation must be carried out. A simpli�ed description of this process is as follows:
Consider the �uid mesh only. A mapping is generated for all nodes on the interface surface,

as illustrated in Figures 3 (quadrilateral face) and 4 (triangular face). For a given node this
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mapping comprises:

• The associated face in the structural mesh de�ned by nodes 1–4.
• The parametric position de�ned by � and � of the projection of the �uid node (5) onto
the above face.

Where the associated face is a triangle, �+ �=1.
Similar mappings are generated for all interface nodes in the structural mesh. Clearly,

some faces may be associated with several nodes; conversely others may be associated with
no nodes. If the topology of the surface mesh is to be maintained throughout the simulation,
these mapping procedures need only to be carried out once, at the start of the simulation.
The surface interpolation, carried out at each coupling cycle is given in Equation (2) (quad

face) and 3 (triangle face)

�5 = ��(�1 − �2 + �3 − �4) + �(�4 − �1) + �(�2 − �1) + �1 (2)

�4 = �(�3 − �2) + �(�2 − �1) + �1 (3)

where � is the interpolated variable. Such an interpolation scheme is deemed valid provided
that the �uid and structural meshes are of similar density and that the variation of the inter-
polated variable over a given element face is small [11].

2.5. Propagation of mesh displacement

Displacement of the �uid domain is de�ned by the nodal displacement �eld at the �uid–
structure interface, as calculated by the structural code. In order to maintain a valid �uid
mesh, the remaining internal nodes must have their positions adjusted, whilst preserving the
mesh topology. The method chosen was based on a simple Laplacian smoothing operation
[12]. The mesh is modelled as a spring system where the displacement of each internal node
is calculated based on the displacements of its nearest neighbours using a simple iterative
procedure

S 0 = Sm; S (k) =

∑n
p=1 S

(k−1)

n
; k=1; 2; : : : ; q; S (m+1) = Sq (4)

where S is the displacement vector, m is the time-step, q is the number of smoothing iterations
and n is the number of neighbouring nodes.
A simple weighting procedure was then added to this scheme based on the distance to each

near neighbour, thus better preserving the original mesh topology. In addition, rather that
repeating the smoothing procedure for a given number of iterations, a control was introduced
whereby the iterations proceeded until the incremental displacement of the internal nodes was
small in comparison to the smallest element size.

2.6. Mesh movement terms

In order to account for the arbitrary movement of the mesh, it is necessary to modify the
governing discrete equations to include the motion of the mesh as well as the �uid in the
transient convection terms. If this is not done, a number of artefacts can result, including
mesh-generated �ows, when a mesh is moved through a stationary �ow [13].
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The CFX-4 implementation is described approximately in Reference [14]. The implemen-
tation presented here follows their approach, although it has been extended to the cell-vertex
treatment implemented in CFX-5.
The standard transient and convective terms in the Navier–Stokes equations can be written

in the form

@�
@t
+
@�uj
@xj

(5)

where � is the conserved quantity and uj are the cartesian velocity components. On transfor-
mation to a moving co-ordinate system, this becomes

1√
g
@(
√
g�)
@t

+
@(�(uj − vj))

@xj
=
@�
@t
+
�√
g
@
√
g

@t
+
@(�(uj − vj))

@xj
(6)

In these equations g is the determinant of the metric tensor of the transformation and
√
g

therefore represents the volume in physical space corresponding to a unit volume in compu-
tational space. vj is the mesh velocity component. The changes that are required therefore are
to add an extra transient term as a volumetric source and to modify the convective velocity
subtracting the mesh velocity. However, this must be done in a consistent fashion, so as not
to create spurious sources and sinks within the equations.
In a cell-vertex formulation, the control volumes are formed from mesh sectors that surround

the nodal points. The convective velocities uj are required at ‘integration’ points, in the centre
of the sector faces, in order to calculate the convective �uxes across the sector boundaries.
See Reference [15] for details. With a moving mesh, the mesh velocity is interpolated from
the nodes to the integration points and added to the conservative velocity at these points. The
conservation of volume constraint arises from Equation (6), by replacing the variable � with
unity.
The equation becomes

1√
g
@
√
g

@t
− @vj
@xj
=0 (7)

so that

1√
g
@
√
g

@t
=
@vj
@xj

(8)

Integrating this over the control volume, we obtain

1√
g

∫ (
@
√
g

@t

)
dV =

∫ (
@vj
@xj

)
dV =

∫
(vjnj) dS (9)

Equation (9) is used to de�ne the volumetric source term in Equation (6), from the mesh
velocities, rather than from direct integration of the volume changes. It only requires a knowl-
edge of the mesh velocity, obtained from the movement of the nodal mesh points only and
gives a consistent treatment, which eliminates many potential artefacts of the approach. For
incompressible, isothermal �ows, the only terms requiring modi�cations are the above con-
vective and transient terms, as the systems considered do not have an enthalpy equation.
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This implementation has been tested on a number of di�erent cases; for example, moving
meshes through stationary �uid, rigid body �uid motion, to demonstrate that the correct results
are obtained.

2.7. Re-meshing

Despite the smoothing procedures performed on the internal �uid nodes, if the solid displace-
ments are large there is likely to be a time when one or more �uid elements become so
distorted that their volume becomes zero or negative and the mesh no longer remains valid.
At such a point, there are two approaches to enable the simulation to continue: First, if the
invalid displacement con�guration can be guessed a priori, then an alternative �uid mesh
can be prepared in advance. When the simulation displacement reaches this point, the �eld
variables can be interpolated onto the alternative valid mesh, and the simulation can proceed.
Several alternative meshes can be prepared for various displacement con�gurations. However,
there is a signi�cant drawback to this semi-automatic method; unless the solid deformations
can be approximated to a single-degree-of-freedom system, it is very di�cult to predict when
the �uid mesh will become invalid, and also to produce an alternative �uid mesh that will be
close enough to the topology of the actual simulation mesh.
The second approach is to actually remesh a section or the entire �uid domain, thus correct-

ing the invalid elements. An automatic scheme such as this was developed, and invoked when
a negative volume element was detected after the mesh smoothing procedure. The surface of
the �uid domain was retained while the CFX tetrahedral Delaunay mesher ‘Meshgen’ was
invoked to remesh the interior. The �eld parameters from the last converged timestep were
then interpolated onto this new mesh and the simulation could proceed as before. An addi-
tional bene�t was that since the surface topology was conserved, the interpolation parameters
for the exchange parameters at the solid–�uid interface were maintained and did not require
re-calculation.

2.8. Volume interpolation

As previously described, the �uid mesh may be regenerated, the new mesh having a di�erent
topology to the previous. In order that the simulation may proceed, the solution variables,
stored on nodes, must be interpolated from the previous mesh to the new mesh. This is
accomplished using a second-order tri-linear interpolation procedure. The CFD simulation
may then be re-started at the next timestep on the new mesh, using the interpolated solution
variables as the initial conditions. However, in using the interpolation with the remeshing
schemes it was noticeable that whilst the displacement results were continuous from one
timestep to the next, the pressure results often showed an artefact for the single timestep
where interpolation took place. Even though there are no constraints on the pressure being
continuous, there is no clear reason for this e�ect.

2.9. Rigid body simulation

In some simulation scenarios, a body in contact with, or immersed in, the �uid �ow undergoes
so little structural deformation that it can be considered rigid. In these situations it was
considered computationally ine�cient to use the ANSYS solver, and so a separate rigid body
solver was developed to compute the response of these bodies to the �ow. The familiar
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equations of motion that are required to be solved, de�ned in the �xed global axis system,
are

m �U + CU̇ + KU = F(t) (10)

I !̇′ +!′ × (I:!′) = M (t) where I =�J�T and !′=�! (11)

Here, F(t) and M (t) are the externally applied force and moment functions derived from the
�uid �ow, m is the body mass, C and K are damping and sti�ness matrices, ! is the angular
velocity vector, J is the constant inertia tensor of the body and � is a tensor transformation
matrix from the body’s own axis system to the global axis. The rotational motions can be sep-
arated from the translational motion of the centre of mass and so di�erent solution approaches
can be separately adopted for each, according to suitability. For the translational motion, the
Houbolt implicit time-integration scheme [16] was chosen to discretize Equation (10). For
the rotations, an implicit algorithm proposed by Simo and Wong [17] has beenemployed to
solve the momentum balance equation in conservation form using a variation on the implicit
Newmark integration scheme [16]. Here, a rotation increment is iteratively calculated ensuring
that energy and angular momentum are conserved correctly.
Additional facilities were added to this scheme to allow for rigid body degree-of-freedom

constraints, initial velocities and rotations, as well as simple linear and torsion springs. This
allowed for the simulation of moderately complex rigid body systems such as valves.

3. APPLICATIONS

The consortium were interested in a wide range of cardiovascular devices, employed in both
simulated in vivo and in vitro situations. Thus to ensure that the coupled simulations were
providing valid results, a series of test application cases were devised, whereby the results
could be directly compared to either analytical solutions or well established experimental data.
Some examples of these application cases are presented here.

3.1. Flow in an elastic vessel

The transient progression of a pressure pulse down a tube has been studied by many investi-
gators over the years, and a good review of these can be found in Reference [18]. The initial
work on wave propagation in an elastic tube has been attributed to Moens and Korteweg in
the latter part of the 19th century, based on Newton’s work on the speed of sound in air.
Taking t as the thickness of the wall and E as the circumferential Young’s Modulus of the
wall, and relating the change in radius to the applied pressure, the following can be written:

c0 =

√
Et
2R�

(12)

This is known as the Moens–Korteweg equation and is based upon several important as-
sumptions: (1) the �uid is ‘ideal’ incompressible and inviscid, (2) the solid wall is thin and
there are no changes in its thickness. The e�ect of viscosity in the �uid was studied by
Womersley [19] in the 1950s, who assumed a sinusoidally variant input pressure, at fre-
quency !. He showed that in the limiting condition of complete longitudinal constraint
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Figure 5. The exaggerated deformation of the vessel wall (left), and the simulation=analytical comparison
of wave propagation speed (right). Here, the dotted line is the Moens–Kortweg solution, and the dashed

line is the Womersley solution.

(no axial movement of the wall), the following equation for the complex wave speed through
an elastic vessel could be written

c= c0

√
1− F10
1− �2 where

(
1− 2J1(�i−3=2)

�i−3=2J0(�i−3=2)

)
=[1− F10]=M ′

10e
i”10 (13)

Here, c0 is the wave speed for an inviscid �uid (the Moens–Korteweg equation), and the
real part gives the actual wave speed. R is the vessel radius, � the �uid density, � is the
dimensionless Womersley parameter where �2 =R2!�=� (� is the �uid viscosity), and J0; J1
are Bessel functions of order zero and one, respectively.
Using a simple quarter-cylinder symmetric model for the elastic vessel, it was possible to

compare the coupled simulation results with these analytical solutions. A ramped pressure inlet
condition was used, together with a timestep of 1ms, and simulations were conducted over a
range of wall sti�ness values. In the results, the dilation of the vessel wall could clearly be
seen propagating along the vessel at a constant speed (Figure 5) and this speed was plotted
alongside the analytical solutions (see Figure 5).
It can be seen that the simulation results are in good agreement with the analytical solutions,

particularly considering the assumptions made in the analyses about the wall thickness and
�uid behaviour.

3.2. St Jude replacement heart valve

Rigid bi-lea�et mechanical valves, like the St Jude valve, represent over 60% of the annual
implants world wide. This particular valve features two symmetrical hinged lea�ets made of
pyrolytic carbon (see Figure 6), which can be considered rigid under typical physiological
loading conditions. Therefore, for this simulation the rigid body solver was used to couple with
the �uid solutions, rather than Ansys. The simulation domain and parameters were designed
to closely mimic an in vitro experimental set-up, data from which provided a validation of
the simulation as a whole. A physiological �ow rate waveform was applied at the inlet, a
quarter-symmetry mesh model was used, and no constraints were placed on the lea�et motion
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Figure 6. Comparison of the simulated valve opening angle with that measured
from high-speed video in vitro.

other than the simple hinge. The semi and fully automatic remeshing methods were employed
to cope with the large rotational deformation of the lea�ets. As the modelling of narrow �uid
gaps is di�cult, the valve was initially meshed slightly open by 5◦, and no e�ort was made
to simulate complete closure.
Solutions were obtained for the entire of systole using timesteps of 1 ms (see Plate 1

for example), and took the order of several days to compute on a multi-processor IBM-SP3
platform. Comparisons of these results were made to data obtained from the experimental
set-up. In order to compare the opening and closing characteristics of the valve, a high-speed
video camera (with frame rates of up to 600 fps) was employed to record the valve from
various positions. From direct measurement on the screen of the recordings, together with the
known fully open=closed angles, it was possible to estimate the opening and closing times of
the valve, as well as its opening angle during opening=closure with respect to time. Errors
were calculated based on an error of ±2 mm on the measurements.
The graph of the simulated opening angle can be seen in Figure 6, with a 90◦ opening

representing the leaf parallel to the long axis of the valve. It shows that whilst the opening
time of the simulated valve is somewhat slower than the experiments indicate (40–50 ms
compared to 30–35 ms), the overall behaviour of the simulated valve is remarkably similar
to the experimental valve. Part of the di�erence might also be attributable to the simulated
valve starting at a slightly open position.

3.3. Berlin Heart cardiac assist device

The Berlin Heart is an extra-corporeal cardiac assist device, of which there are several varying
designs based around the same principle; the predominantly rigid central chamber contains the
blood, has an inlet and an outlet, and is bounded by two opposing �exible roll membranes.
The pump inlet would normally be connected directly to the ventricle via a cannula, with
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Figure 7. The symmetrical pump �uid mesh (left), and velocity vectors along the symmetry
plane during the ‘pump’ phase (right).

another connecting the outlet to the aorta. Valves are built onto the blood chamber inlet and
outlet to ensure the direction of �ow, and these valves are usually rigid tilting disc valves
(although they were not directly modelled) or a polyeurythane tri-lea�et design. During the
pump phase, symmetrically opposing pistons contact the membranes and push them towards
each other, thus increasing the pressure in the chamber and forcing the blood through the
outlet. During the �ll phase, the pistons retreat and contact with the membranes is broken.
The movement of the membranes is then constrained only by the action of the blood entering
via the inlet, and the pressure within the chamber becomes low thus retarding the movement
of the membranes.
Simulation results were obtained over an entire ‘cardiac’ cycle using timesteps of 10–20ms

(see Figure 7). These were compared to experimental �ow �eld results obtained from laser
light sheet and laser Doppler experiments. The simulated �ow was clearly seen to pulsate from
inlet to outlet and several important features, such as �ow separation regions and particular
membrane deformations, were identi�able in both the simulation and experiment.

4. CONCLUSIONS

Studies with this coupling system have demonstrated that accurate simulation of cardiovascular
systems is now within reach. Indeed, the application of the system could equally extend
into any �eld where �uid–structure interactions are of primary concern. The data from such
simulation will provide invaluable bene�t to device manufacturers that will optimize the design
and prototyping process, reducing cost and ensuring that safer and better understood products
reach the market.
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Plate 1. The St Jude valve (left), and the simulation results midway through valve opening (right).
Velocity vectors are shown on a horizontal plane through the model.
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